The following sections discuss the types of cables used in networks and other related topics.
- Unshielded Twisted Pair (UTP) Cable
- Shielded Twisted Pair (STP) Cable
- Coaxial Cable
- Fiber Optic Cable
- Wireless LANs
- Installing Cable - Some Guidelines
Unshielded Twisted Pair (UTP) Cable
Twisted pair cabling comes in two varieties: shielded and unshielded. Unshielded twisted pair (UTP) is the most popular and is generally the best option for school networks (See fig. 1).Fig.1. Unshielded twisted pair
Categories of Unshielded Twisted Pair
Type | Use |
Category 1 | Voice Only (Telephone Wire) |
Category 2 | Data to 4 Mbps (LocalTalk) |
Category 3 | Data to 10 Mbps (Ethernet) |
Category 4 | Data to 20 Mbps (16 Mbps Token Ring) |
Category 5 | Data to 100 Mbps (Fast Ethernet) |
If you are designing a 10 Mbps Ethernet network and are considering the cost savings of buying Category 3 wire instead of Category 5, remember that the Category 5 cable will provide more "room to grow" as transmission technologies increase. Both category 3 and category 5 UTP have a maximum segment length of 100 meters. In Florida, Category 5 cable is required for retrofit grants. 10BaseT refers to the specifications for unshielded twisted pair cable (category 3, 4, or 5) carrying Ethernet signals.
Unshielded Twisted Pair Connector
The standard connector for unshielded twisted pair cabling is an RJ-45 connector. This is a plastic connector that looks like a large telephone-style connector (See fig. 2). A slot allows the RJ-45 to be inserted only one way. RJ stands for Registered Jack, implying that the connector follows a standard borrowed from the telephone industry. This standard designates which wire goes with each pin inside the connector.Fig.2. RJ-45 connector
Shielded Twisted Pair (STP) Cable
A disadvantage of UTP is that it may be susceptible to radio and electrical frequency interference. Shielded twisted pair (STP) is suitable for environments with electrical interference; however, the extra shielding can make the cables quite bulky. Shielded twisted pair is often used on networks using Token Ring topology.Coaxial Cable
Coaxial cabling has a single copper conductor at its center. A plastic layer provides insulation between the center conductor and a braided metal shield (See fig. 3). The metal shield helps to block any outside interference from fluorescent lights, motors, and other computers.Fig.3. Coaxial cable
Thin coaxial cable is also referred to as thinnet. 10Base2 refers to the specifications for thin coaxial cable carrying Ethernet signals. The 2 refers to the approximate maximum segment length being 200 meters. In actual fact the maximum segment length is 185 meters. Thin coaxial cable is popular in school networks, especially linear bus networks.
Thick coaxial cable is also referred to as thicknet. 10Base5 refers to the specifications for thick coaxial cable carrying Ethernet signals. The 5 refers to the maximum segment length being 500 meters. Thick coaxial cable has an extra protective plastic cover that helps keep moisture away from the center conductor. This makes thick coaxial a great choice when running longer lengths in a linear bus network. One disadvantage of thick coaxial is that it does not bend easily and is difficult to install.
Coaxial Cable Connectors
The most common type of connector used with coaxial cables is the Bayone-Neill-Concelman (BNC) connector (See fig. 4). Different types of adapters are available for BNC connectors, including a T-connector, barrel connector, and terminator. Connectors on the cable are the weakest points in any network. To help avoid problems with your network, always use the BNC connectors that crimp, rather than screw, onto the cable.Fig.4. BNC connector
Fiber Optic Cable
Fiber optic cabling consists of a center glass core surrounded by several layers of protective materials (See fig. 5). It transmits light rather than electronic signals, eliminating the problem of electrical interference. This makes it ideal for certain environments that contain a large amount of electrical interference. It has also made it the standard for connecting networks between buildings, due to its immunity to the effects of moisture and lighting.Fiber optic cable has the ability to transmit signals over much longer distances than coaxial and twisted pair. It also has the capability to carry information at vastly greater speeds. This capacity broadens communication possibilities to include services such as video conferencing and interactive services. The cost of fiber optic cabling is comparable to copper cabling; however, it is more difficult to install and modify. 10BaseF refers to the specifications for fiber optic cable carrying Ethernet signals.
Fig.5. Fiber optic cable
- Outer insulating jacket is made of Teflon or PVC.
- Kevlar fiber helps to strengthen the cable and prevent breakage.
- A plastic coating is used to cushion the fiber center.
- Center (core) is made of glass or plastic fibers.
Fiber Optic Connector
The most common connector used with fiber optic cable is an ST connector. It is barrel shaped, similar to a BNC connector. A newer connector, the SC, is becoming more popular. It has a squared face and is easier to connect in a confined space.Ethernet Cable Summary
Specification | Cable Type | Maximum length |
10BaseT | Unshielded Twisted Pair | 100 meters |
10Base2 | Thin Coaxial | 185 meters |
10Base5 | Thick Coaxial | 500 meters |
10BaseF | Fiber Optic | 2000 meters |
Wireless LANs
Not all networks are connected with cabling; some networks are wireless. Wireless LANs use high frequency radio signals or infrared light beams to communicate between the workstations and the file server. Each workstation and file server on a wireless network has some sort of transceiver/antenna to send and receive the data. Information is relayed between transceivers as if they were physically connected. For longer distance, wireless communications can also take place through cellular telephone technology or by satellite.Wireless networks are great for allowing laptop computers or remote computers to connect to the LAN. Wireless networks are also beneficial in older buildings where it may be difficult or impossible to install cables.
Wireless LANs also have some disadvantages. They are very expensive, provide poor security, and are susceptible to electrical interference from lights and radios. They are also slower than LANs using cabling.
Installing Cable - Some Guidelines
When running cable, it is best to follow a few simple rules:- Always use more cable than you need. Leave plenty of slack.
- Test every part of a network as you install it. Even if it is brand new, it may have problems that will be difficult to isolate later.
- Stay at least 3 feet away from fluorescent light boxes and other sources of electrical interference.
- If it is necessary to run cable across the floor, cover the cable with cable protectors.
- Label both ends of each cable.
- Use cable ties (not tape) to keep cables in the same location together.